🌑

Hongyao Tang's Homepage

personal photo

Personal Information

Hello, I am Hongyao Tang. I just finished my Ph.D. in Deep Reinforcement Learning (DRL) Lab, Tianjin University advised by Jianye Hao and Zhaopeng Meng. I will be a Postdoctoral researcher in Robotics and Embodied AI Lab (REAL) at the Université de Montréal and Mila, and will work with Professor Glen Berseth, starting from Fall 2023.

My research interests lie in unveiling the co-learning dynamics of representation and Reinforcement Learning (RL) function approximation and realizing new approaches/paradigms for efficient, performant and generalizable RL. Currently, my research focus is Self-supervised Representation Learning in DRL and Off-policy RL. I am also interested in Meta RL, MARL, Offline RL and Foundation Models for Decision Making.

I have experiences in applying DRL in practical problems like Electronic Design Automation (EDA), Drug Discovery, Online Games and etc. I am very willing to contribute to addressing real-world problems.


Recent Publications & Preprints

PS: Authors with equal contribution are marked by *.

Bridging Evolutionary Algorithms and Reinforcement Learning: A Comprehensive Survey
Pengyi Li, Jianye Hao, Hongyao Tang, Xian Fu, Yan Zheng, Ke Tang
arXiv preprint 2024 | [Paper]

Reining Generalization in Offline Reinforcement Learning via Representation Distinction
Yi Ma, Hongyao Tang (Corresponding Author), Dong Li, Zhaopeng Meng
NeurIPS 2023 | [Paper]

Boosting Off-policy RL with Policy Representation and Policy-extended Value Function Approximator
Min Zhang, Jianye Hao, Hongyao Tang, Yan Zheng
ICML 2023 Workshop on Frontiers4LCD | [Paper]

RACE: Improve Multi-Agent Reinforcement Learning with Representation Asymmetry and Collaborative Evolution
Pengyi Li, Jianye Hao, Hongyao Tang, Yan Zheng, Xian Fu
ICML 2023 | [Paper]

The Ladder in Chaos: A Simple and Effective Improvement to General DRL Algorithms by Policy Path Trimming and Boosting
Hongyao Tang, Min Zhang, Jianye Hao
arXiv preprint 2023 | [Paper]

ERL-Re^2: Efficient Evolutionary Reinforcement Learning with Shared State Representation and Individual Policy Representation
Jianye Hao, Pengyi Li, Hongyao Tang, Yan Zheng, Xian Fu, Zhaopeng Meng
ICLR 2023 & DRL Workshop, NeurIPS 2022 | [Paper] [Code]

Exploration in Deep Reinforcement Learning: From Single-Agent to Multi-Agent Domain
Jianye Hao, Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu, Zhaopeng Meng, Peng Liu
IEEE Transactions on Neural Networks and Learning Systems (Accepted in 2023 Jan) | [Paper]

Towards A Unified Policy Abstraction Theory and Representation Learning Approach in Markov Decision Processes
Min Zhang*, Hongyao Tang*, Jianye Hao, Yan Zheng
DRL Workshop, NeurIPS 2022 | [Paper]

PMIC: Improving Multi-Agent Reinforcement Learning with Progressive Mutual Information Collaboration
Pengyi Li, Hongyao Tang, Tianpei Yang, Xiaotian Hao, Tong Sang, Yan Zheng, Jianye Hao, Matthew E. Taylor, Wenyuan Tao, Zhen Wang
ICML 2022 | [Paper] [Code]

HyAR: Addressing Discrete-Continuous Action Reinforcement Learning via Hybrid Action Representation
Boyan Li*, Hongyao Tang*, Yan Zheng, Jianye Hao, Pengyi Li, Zhen Wang, Zhaopeng Meng, Li Wang
ICLR 2022 & NeurIPS 2021 DRL Workshop Contributed Talk | [Paper]

What about Inputting Policy in Value Function: Policy Representation and Policy-Extended Value Function Approximator
Hongyao Tang, Zhaopeng Meng, Jianye Hao, Chen Chen, Daniel Graves, Dong Li, Changmin Yu, Hangyu Mao, Wulong Liu, Yaodong Yang, Wenyuan Tao, Li Wang
AAAI 2022 Oral Presentation (< 5%) & NeurIPS 2020 DRL Workshop | [Paper]

More Publications


Education & Work (Internship) Experiences

2019.09 - 2023.06

Phd, College of Intelligence and Computing, Tianjin University (advised by Jianye Hao and Zhaopeng Meng)

2020.05 - 2023.04

DRL Researcher (Intern), Noah's Ark Lab, Huawei (advised by Chen Chen and Zhentao Tang)

2019.09 - 2020.04

AI Researcher (Intern), Quantum Lab, Tencent (advised by Guangyong Chen)

2018.07 - 2018.10

DRL Researcher (Intern), Fuxi AI Lab, NetEase (advised by Tangjie Lv)

2017.09 - 2019.07

Master, College of Intelligence and Computing, Tianjin University (advised by Jianye Hao and Li Wang)

2013.09 - 2017.07

Bachelor, School of Software Engineering, Tianjin University


Academic Service

NeurIPS

2021 - 2023 (Top Reviewer Award at NeurIPS 2022)

ICLR

2022 - 2024 (Highlighted Reviewer Award at ICLR 2022)

ICML

2021 - 2023

AAAI

2021 - 2024

IJCAI

2021 - 2023

AAMAS

2021 - 2024

Transactions on Machine Learning Research (TMLR)


Invited Talks

2022.07 & 2022.06 & 2022.01

Policy-extended Value Function Approximator and Policy Representation in Reinforcement Learning
The 9th China Computer Federation Seminar on Agent and Multi-agent System (2022 Jul)
RL China Community Weakly Seminar (2022 Jun)
The 3rd International Conference on Distributed Artificial Intelligence (2022 Jan)

2022.07

Towards Understanding The Learning Dynamics of Deep Reinforcement Learning
Huawei Noah’s Ark Lab, Decision-making and Reasoning Group (during internship)

2021.10

Self-supervised Reinforcement Learning — A Perspective of Representation
2021 TJU RL Summer Seminar

2021.06

Reward-agnostic Unsupervised State Representation in Deep Reinforcement Learning
Huawei Noah’s Ark Lab, Decision-making and Reasoning Group (during internship)

2020.11

State Abstraction and State Representation Learning in Reinforcement Learning
Huawei Noah’s Ark Lab, Decision-making and Reasoning Group (during internship)

2019.10

Deep Multi-Agent Reinforcement Learning with Discrete-Continuous Hybrid Action Spaces
The 1st International Conference on Distributed Artificial Intelligence (DAI 2019)

2019.08

Bias and Variance in Deep Reinforcement Learning
2019 TJU RL Summer Seminar


Updated by Hongyao Tang, Sep 2023.